Kinetic Theory of Gases

(NEP Semester IV - Chapter 3)

Dr. DEBOJYOTI HALDER

Department of Physics,

R. B. C. Evening College

Ideal Gas Equation

Boyle's Law

states:

"The pressure of a fixed mass of gas at constant temperature is inversely proportional to its volume."

OR

$$P \propto \frac{1}{V}$$
 if $T = \text{constant}$

 The related equations to the Boyle's law are

$$PV = \text{constant}$$

OR

$$P_1V_1 = P_2V_2$$

where P_1 : initial pressure

 P_2 : final pressure

 V_1 : initial volume

 V_2 : final volume

The pressure of a fixed mass of gass at constant temperature is inversely propertional to its volume.

Charles's law

· states:

"The volume of a fixed mass of gas at constant pressure is directly proportional to its absolute temperature."

$$V \propto T$$
 If $P = \text{constant}$

The related equations to the Charles' law are

$$\frac{V}{T}$$
 = constant

OR

$$\frac{V_1}{T_1} = \frac{V_2}{T_2}$$

where

 T_1 : initial absolute temperatu re

 T_2 : final absolute temperatu re

 V_1 : initial volume

 V_2 : final volume

Graphs of the Charles's law.

Gay-Lussac's (pressure) law states:

"The pressure of a fixed mass of gas at constant volume is directly proportional to its absolute temperature."

$$P \propto T$$
 If $V = \text{constant}$

The related equations to the Gaylussac's law are

$$\frac{P}{T}$$
 = constant

OR $\frac{P_1}{T_1} = \frac{P_2}{T_2}$

where

 T_1 : initial absolute temperature

 T_2 : final absolute temperature

 P_1 : initial pressure

 P_2 : final pressure

Graphs of the Gay-lussac's (pressure) law

Equation of state for an ideal gas

- An ideal gas is defined as a perfect gas which obeys the three gas laws (Boyle's, Charles's and Gay-Lussac's) exactly.
- Consider an ideal gas in a container changes its pressure P, volume V and temperature T as shown in Figure 1.

Figure 1

In 1st stage, temperature is kept at T_1 ,
 Using Boyle's law :

$$P_2V' = P_1V_1$$

- In $2^{\rm nd}$ stage, pressure is kept constant at P_2 , Using Charles's law :

$$\frac{V'}{T_1} = \frac{V_2}{T_2}$$

$$V' = \frac{V_2 T_1}{T_2}$$
 (2)

- Equating eqs. (1) and (2), thus

$$\frac{PV}{T}$$
 = constant ____ (3)

• Consider 1 mole of gas at standard temperature and pressure (S.T.P.), T = 273.15 K, P = 101.3 kPa and $V_{\rm m}$ = 0.0224 m³

From equation (3),PV

$$R = \frac{PV_{\text{m}}}{T} = \frac{101.3 \times 10^{3} \quad 0.0224}{273.15}$$

$$R = 8.31 \text{ J K}^{-1} \text{ mol}^{-1}$$

where R is called molar gas constant and its value is the same for all gases.

- Thus
$$\frac{PV_{\rm m}}{T}=R$$

$$PV_{\rm m}=RT \ \ {\rm where} \ V_{\rm m}: {\rm volume} \ \ {\rm of} \ 1{\rm mole} \ {\rm gas}$$

For n mole of an ideal gas, the equation of state is written as

$$PV = nRT$$

where n : the number of mole gas

$$n = \frac{m}{M}$$

where

m: mass of a gas

M: molar mass of a gas

OR

$$n = \frac{N}{N_{\rm A}}$$

where

N: number of molecules

 $N_{\rm A}$: Avogadro's constant = 6.02×10^{23} mol⁻¹ If the Boltzmann constant, k
 is defined as

$$k = \frac{R}{N_{\rm A}} = 1.38 \times 10^{-23} \,\text{J K}^{-4}$$

then the equation of state becomes

$$PV = NkT$$

Example 1:

The volume of vessel A is three times of the volume vessel B. The vessels are filled with an ideal gas and are at a steady state. The temperature of vessel A and vessel B are at 300 K and 500 K respectively as shown in Figure 2.

If the mass of the gas in the vessel A is m, obtain the mass of the gas in the vessel B in terms of m.

Solution:

$$V_{\rm A}=3V_{\rm B}; m_{\rm A}=m; T_{\rm 0A}=300\,{\rm K}; T_{\rm 0B}=500\,{\rm K}$$

Since the vessels A and B are
connected by a narrow tube thus the
pressure for both vessels is same,
finally i.e. $P_{\rm A}=P_{\rm B}=P$

The system is in the steady state, thus

$$T_{0A} = T_{A} = 300 \text{ K}; T_{0B} = T_{B} = 500 \text{ K}$$

By applying the equation of state for an ideal gas,

$$PV = nRT \text{ and } n = \frac{m}{M}$$

$$PV = \left(\frac{m}{M}\right)RT$$

Therefore,

Vessel A:

$$P_{\rm A}V_{\rm A} = \left(\frac{m_{\rm A}}{M}\right)RT_{\rm A}$$

$$P \, \mathbf{W}_{\mathrm{B}} = \left(\frac{m}{M}\right) R \, \mathbf{W}_{\mathrm{B}}$$

Vessel B:

$$V_{\rm A} = 3V_{\rm B}; m_{\rm A} = m; T_{\rm 0A} = 300 \,\rm K; T_{\rm 0B} = 500 \,\rm K$$

$$PV_{\rm B} = 100 \left(\frac{m}{M}\right) R \qquad (1)$$

$$PV_{\rm B} = 500 \left(\frac{m_{\rm B}}{M}\right) R \qquad (2)$$

By equating the eqs. (1) and (2) hence

$$100 \left(\frac{m}{M}\right) R = 500 \left(\frac{m_{\rm B}}{M}\right) R$$

$$m_{\rm B} = \frac{m}{5}$$

2. Kinetic theory of gases

• The macroscopic behaviour of an ideal gas can be describe by using the equation of state but the microscopic behaviour only can be describe by kinetic theory of gases.

1 Assumption of kinetic theory of gases

- · All gases are made up of identical atoms or molecules.
- All atoms or molecules move randomly and haphazardly.
- The volume of the atoms or molecules is negligible when compared with the volume occupied by the gas.
- The intermolecular forces are negligible except during collisions.
- Inter-atomic or molecular collisions are elastic.
- The duration of a collision is negligible compared with the
 - time spent travelling between collisions.
- Atoms and molecules move with constant speed between collisions. Gravity has no effect on molecular motion.

2 Force exerted by an ideal gas

• Consider an ideal gas of N molecules are contained in a cubical container of side d as shown in Figure 4.

Figure 4

- Let each molecule of the gas have the mass m and velocity v.
- The velocity, v of each molecule can be resolved into their components i.e. v_x , v_y and v_z .
- Consider, initially a single molecule moving with a velocity v_x towards wall A and after colliding elastically, it moves in the opposite direction with a velocity v_x as shown in Figure 5.

Therefore the change in the linear momentum of the molecule is given by

$$\Delta P_x = -mv_x - mv_x$$

$$\Delta P_x = -2mv_x$$

The molecule has to travel a distance 2d (from A to B and back to A) before its next collision with wall A. The time taken for this movement is

$$\Delta t = \frac{2d}{v_x}$$

If F_{x1} is the magnitude of the average force exerted by a molecule on the wall in the time Δt , thus by applying Newton's second law of motion gives

$$F_{x1} = \frac{\Delta P_x}{\Delta t} = \frac{2mv_x}{\left(\frac{2d}{v_x}\right)} \Longrightarrow F_{x1} = \left(\frac{m}{d}\right)v_x^2$$

For N molecules of the ideal gas,

$$F_{x} = \left(\frac{m}{d}\right) v_{x1}^{2} + \left(\frac{m}{d}\right) v_{x2}^{2} + \dots + \left(\frac{m}{d}\right) v_{xN}^{2}$$

$$F_{x} = \frac{m}{d} \sqrt{v_{x1}^{2} + v_{x2}^{2} + \dots + v_{xN}^{2}}$$

where v_{x1} is the x of x component of velocity of molecule 1, v_{x2} is the component of velocity molecule 2 and so on.

 The mean (average) value of the square of the velocity in the x direction for N molecules is

$$< v_x^2 > = \frac{v_{x1}^2 + v_{x2}^2 + \dots + v_{xN}^2}{N}$$

Thus, the *x* component for the total force exerted on the wall of the cubical container is

$$F_x = \frac{m}{d}N < v_x^2 >$$

The magnitude of the velocity
 v is given by

$$v^2 = v_x^2 + v_y^2 + v_z^2$$

then

$$= + < v_y^2> + < v_z^2>$$

• Since the velocities of the molecules in the ideal gas are completely random, there is no preference to one direction or another. Hence $< v_x > = < v_y > = < v_z >$

$$\langle v_x \rangle = \langle v_y \rangle = \langle v_z \rangle$$

 $\langle v^2 \rangle = 3 \langle v_x^2 \rangle$
 $\langle v_x^2 \rangle = \frac{\langle v^2 \rangle}{3}$

• The total force exerted on the wall in all direction, F is given by

$$F = \frac{m}{d}N < v_x^2 > \longrightarrow F = \frac{m}{d}N\left(\frac{< v^2 >}{3}\right)$$

$$F = \frac{N}{3}\left(\frac{m < v^2 >}{d}\right)$$

where $\langle v^2 \rangle$: mean square velocity of the molecule

3 Pressure of an ideal gas

From the definition of pressure,

The definition of pressure,
$$P = \frac{F}{A} \text{ where } A = d^2 \text{ and } F = \frac{N}{3} \left(\frac{m < v^2 >}{d} \right)$$

$$P = \frac{1}{3} \left(\frac{Nm < v^2 >}{d^3} \right) \text{ and } d^3 = V$$

$$P = \frac{1}{3} \left(\frac{Nm}{V} < v^2 > \right) \qquad (1)$$

$$PV = \frac{1}{3} \left(\frac{Nm}{V} < v^2 > \right) \qquad (2)$$

where Nm: mass of an ideal gas in the container

 Since the density of the gas, ρ is given by

$$\rho = \frac{Nm}{V}$$

hence the equation (15.1) can be written as

$$P = \frac{1}{3}\rho < v^2 >$$
 (3)

where

P: pressure by the gas

 ρ : density of the gas $< v^2 >$: mean square velocity of the gas molecules

Root mean square velocity (v_{rms})

is defined as
$$v_{\rm rms} = \sqrt{\langle v^2 \rangle}$$

From the equation of state in terms of Boltzmann constant, k:

$$PV = NkT \tag{4}$$

By equating the eqs. (15.4) and (14.2), thus

$$NkT = \frac{1}{3} Mm < v^2 >$$

$$\langle v^2 \rangle = \frac{3kT}{m}$$

$$v_{\rm rms} = \sqrt{\frac{3kT}{m}}$$
 OR $v_{\rm rms} = \sqrt{\frac{3RT}{M}}$

where

 $v_{
m rms}$: root mean square velocity (speed)

m: mass of a molecule gas

M: molar mass of a gas

T:absolute temperature

Since

$$P = \frac{1}{3}\rho < v^2 >$$

thus

$$\langle v^2 \rangle = \frac{3P}{\rho}$$

therefore the equation of root mean square velocity of the gas molecules also can be written as

$$v_{\rm rms} = \sqrt{\frac{3P}{\rho}}$$

Molecular kinetic energy and internal energy

- 1. Translational kinetic energy of molecule
 - From equation (1), thus

$$P = \frac{1}{3} \left(\frac{Nm}{V} < v^2 > \right)$$

$$P = \frac{2}{3} \left(\frac{N}{V} \right) \left(\frac{1}{2} m < v^2 > \right)$$

(5)

This equation shows that

P increases (↑) When

$$\left(\frac{1}{2}m < v^2 > \right)$$
 increases

1 Translational kinetic energy of molecule

This equation shows that P increases (\uparrow) When $\frac{N}{V}$ increases $\frac{1}{2}m < v^2 > \text{increases}$

Rearrange equation (14.5), thus

$$PV = \frac{2}{3}N\left(\frac{1}{2}m < v^2 > \right) \text{ and } PV = NkT$$

$$NkT = \frac{2}{3}N\left(\frac{1}{2}m < v^2 > \right)$$

$$\frac{1}{2}m < v^2 > = \frac{3}{2}kT$$

and

$$\frac{1}{2}m < v^2 > = K_{\rm tr}$$

$$K_{\rm tr} = \frac{3}{2}kT = \frac{3}{2} \left(\frac{R}{N_{\rm A}}\right)T$$

where

 $K_{\rm tr}$: average translati onal kinetic energy of a molecule

T: absolute temperature

k:Boltzmann constant

R: molar gas constant

 $N_{\rm A}$: Avogadro constant

 For N molecules of an ideal gas in the cubical container, the total average (mean) translational kinetic energy, E is given by

$$E = NK_{tr}$$

$$E = N \left(\frac{3}{2}kT\right)$$

$$E = \frac{3}{2}NkT$$

OR

$$E = \frac{3}{2}nRT$$

2 Principle of equipartition of energy

States: "the mean (average) kinetic energy of every degrees of freedom of a molecule is $\frac{1}{2}kT$. Therefore

$$< K > = \frac{f}{2}kT$$

 $\langle K \rangle = \frac{f}{2}kT$ Mean (average) kinetic energy per molecule

OR

$$< K > = \frac{f}{2}RT$$

 $\langle K \rangle = \frac{f}{2}RT$ Mean (average) kinetic energy per mole

where f: degrees of freedom

T: absolute temperature

3 Degree of freedom (f)

is defined as a number of independent ways in which an atom or molecule can absorb or release or store the energy.

Monatomic gas (e.g. He,Ne,Ar)

The number of degrees of freedom is 3 i.e. three direction of translational motion where contribute translational kinetic energy as shown in Figure 6.

Diatomic gas (e.g. H₂, O₂, N₂)

The number of degrees of freedom is

Translational kinetic energy → 3

Rotational kinetic energy → 2

5

Polyatomic gas (e.g. H₂O, CO₂, NH₃)

The number of degrees of freedom is
 Translational kinetic energy → 3
 Rotational kinetic energy → 3

6

Table 1 shows the degrees of freedom for various molecules

Molecule	Example	Degrees of Freedom (f)			Average kinetic energy per
		Translational	Rotational	Total	molecule, $< K >$
Monatomic	He	3	0	3	$\frac{3}{2}kT$
Diatomic	H ₂	3	2	5	$\frac{5}{2}kT$
Polyatomic	H ₂ O	3	3	6	$\frac{6}{2}kT = 3kT$

(At temperature of 300 K)

- Degrees of freedom depend on the absolute temperature of the gases.
 - For example : Diatomic gas
 (H₂)
 - Hydrogen gas have the vibrational kinetic energy (as shown in Figure 9) where contribute 2 degrees of freedom which correspond to the kinetic energy and the potential energy associated with vibrations along the bond between the atoms.

when the temperature,

At 250 K
$$\implies f = 3$$

At 250 – 750 K $\implies f = 5$
At >750 K $\implies f = 7$

- 4 Internal energy of gas and relate the internal energy to the number of degree of freedom
- is defined as the sum of total kinetic energy and total potential energy of the gas molecules.
- But in ideal gas, the intermolecular forces are assumed to be negligible thus the potential energy of the molecules can be neglected.

Thus for *N* molecules,

$$U = N < K >$$

$$U = \frac{f}{2} NkT \text{ and } k = \frac{R}{N_A}$$

OR

$$U = \frac{f}{2} nRT$$

where U: internal energy of the gas

Table 2 shows the properties for 1 mole of an ideal gas

	Monatomic	Diatomic	Polyatomic
Degrees of freedom, f	3	5	6
Average kinetic energy per molecule, <k></k>	$\frac{3}{2}kT$	$\frac{5}{2}kT$	$\frac{6}{2}kT = 3kT$
Internal energy, $oldsymbol{U}$	$\frac{3}{2}RT$	$\frac{5}{2}RT$	$\frac{6}{2}RT = 3RT$